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a b s t r a c t

Relationships for the particle concentration and convection velocity profile has been obtained by the
adaptation of the random surface renewal model [1–5] to the particle continuity and momentum
equations of the nonisothermal turbulence boundary-layer flows; particle transport mechanisms of
Brownian and turbulent diffusion, eddy impaction, particle inertia, and thermophoresis are included.
This proposed model provides a useful framework for coupling these modeling parameters with
analytical equation of the particle deposition velocity. The predictions obtained on the basis of this
equation have been found to be in good agreement with experimental values of deposition velocity for
fully-developed turbulent pipe flow.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

In the problem of particle deposition through a turbulent flow
with fully developed boundary, the particles are generally assumed
to be transported by turbulent diffusion except when they are very
close to the wall where the turbulent eddy diffusivity vanishes.
Early attempts to predict the rate of deposition onto plane surfaces
assumed that particles traversed the viscous sublayer by molecular
diffusion, which has been found to be satisfactory for the non-
inertial particles. When sþp was increased, various investigators
found that deposition rates were larger than predicted and
presumed that the additional mechanisms of deposition had to be
developed in order to explain this behaviour of deposition velocity.
One of the most used calculation methods for the observed large
increase in deposition velocity is the free-flight model [6–9]. The
fundamental difference between different models of this type lies
in prescribing the initial velocity that the particles possess at the
distance where they effectively breaks away from the containing
eddies and embarks on a free flight towards the wall. The first to
offer a theoretical calculation method for observing large increase
in deposition rates was based on a constant initial velocity, 0.9u*,
and yielded reasonable agreement with deposition measurements
for the intermediate particle relaxation times 0:1 < sþp < 10 [6].
son SAS. All rights reserved.
The independence of initial velocity upon the position was ques-
tioned by arguing that that the initial velocity should be the same as
the local rms fluctuation velocity of turbulent fluid, but the
computed deposition velocities obtained on the basis of this
assumption were lower by some two orders of magnitude than the
measured values [7]. The calculations of deposition velocity
obtained by another variation of free-flight model gave the results
close to Friedlander and Johnstone predictions [8]. In order to
improve the discrepancy of Davies’s model, a new expression was
taken into account for the particle eddy diffusivity,
ep=n ¼ ep=nþ y0þ2

f sþp [9]. This model yielded reasonable agreement
with deposition rate measurements for intermediate relaxation
times, but poor agreement at high values where the measured
deposition velocities has been found to be changed fairly to a slowly
falling value with increasing the particle relaxation time [10,11].
This is primarily due to the additional factor y0þ2

f sþp , which increases
in an unbounded manner with relaxation time and does not reflect
the difference between the particle and fluid fluctuation velocity.
The deficiencies suggest that particle inertia does not solely
manifest itself as an increased diffusivity in the boundary layer.

The previous paper [12] gave an alternative approach by adap-
tation of the surface rejuvenation model [13,14] to formulate the
thermophoretic velocity and the particle concentration profiles in
a nonisothermal turbulence flow with fully developed boundary
layer. The behaviour of thermophoretic depositions within the
average sublayer growth period obtained on the basis of this
stochastic formulation stressed that the thermophoresis always
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Nomenclature

c instantaneous particle concentration
C mean particle concentration
c0 fluctuating particle concentration
Cc Cunningham slip correction factor
Cf Cunningham slip correction factor
cp specific heat at constant pressure
Cm momentum exchange coefficient
Cs thermal slip coefficient
Ct temperature jump coefficient
d tube diameter
Db Brownian diffusion
dp particle diameter
Dp particle diffusion coefficient
f friction factor
Fth thermophoretic force
Kb Boltzmann constant
Kg thermal conductivity of carried gas
Kn Knudsen number
Kp thermal conductivity of particle
Kth thermophoretic coefficient
N particle mass flux
P pressure
Pr Prandtl number
ps statistic distribution for s
q heat flux
r tube radius
rp particle radius
Re Reynolds number
RLf ðsÞ Lagrangian correlation coefficient
Sc Schmidt number
T mean temperature
T0 fluctuating temperature
uf instantaneous fluid velocity in axial direction
Uf mean fluid velocity in axial direction

u0f fluctuating fluid velocity in axial direction
u* friction velocity
yf instantaneous fluid velocity in radial direction
Vf mean fluid velocity in radial direction
y0f fluctuation fluid velocity in radial direction
yd particle deposition velocity
yp instantaneous particle velocity
Vp mean particle velocity
y0p fluctuating particle velocity
Vpc particle convection velocity
Vth thermophoretic velocity
x distance along wall
y distance from wall

Greek letters
a thermal diffusivity
r fluid density
n kinematic viscosity
sw shear stress
m dynamical viscosity
et turbulent eddy viscosity
em turbulent eddy diffusivity
ep particle eddy diffusivity
dm maximum sublayer thickness
lp mean free path
s sublayer growth period
sg integral time scale
sp particle relaxation time

Superscripts
þ Dimensionless parameters
� average with respect to statistic distributions

Subscripts
N bulk stream conditions
w wall conditions
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remains an active transport mechanism right through the sublayer
and that the small particles benefit most from this effect because
with their low inertia they tend to follow the flow more closely. The
predicted trend of average particle deposition velocities in an
isothermal turbulence flow has been found to be in good agree-
ment with both the Harriott technique [15] and the formulation
proposed by [16]. However, as compared to the measured deposi-
tion velocities [10] that are generally accepted as one of most
dependable data set, it can be inferred that the validity of this
calculation scheme will be restricted in an intermediate range of
particle relaxation time, and that the contradiction might be caused
mainly by the absence of particle velocity fluctuations, which may
be different from the fluid velocity fluctuations if the particle
inertia is large. It should be noted that, on the other hand, the
expression of analytical equations were limited to the determina-
tion of average transport properties in accordance with specified
transport parameters because the order of Bessel function has to be
a positive integer.

The acceleration of particles near the wall has been interpreted
in the Eulerian framework by arguing that the particles with certain
range of inertia moving against the wall-normal gradient in
turbulent fluctuation intensity may cause them to trap into the low
turbulence intensity regions, and that the wall-normal component
of particle Reynolds stress in the regions enhanced by the inter-
action of particle inertia and the inhomogeneous turbulence flow
plays an important role in the particle deposition mechanism
[11,17–22]. The Eulerian computational methods of deposition have
been developed by solving both the particle continuity and
momentum equations, and represented considerable progress in
the physical understanding of deposition processes. The absence of
the use of the particle momentum equation in the previous paper
[12] may therefore be its major weakness as well as the free-flight
models, so that this work presents a model for calculating the
deposition rate of particles in a simulate turbulence fluid field by
analyzing both the particle continuity and momentum equations in
connection with the random surface renewal model [1–5]. It is
expected that the analytical approach obtained on the basis of this
analysis is valid to quantitatively estimate the time-averaged
particle transport rates for a wide range of particle sizes and that
the physical trend of the comparable effects between the diffusive
and convective flux on particle transport processes can be quanti-
tatively revealed in some extent.

2. Average sublayer growth periods

The encounter of fluids with very different velocities forms
a strong shear layer in a certain region above the wall and causes the
energy dissipation by the small eddies as the agglomerate fluid lump
disintegrated. An abrupt fluctuation caused by the rapidly growing
violent instability of an exploded eddy with fluid possessing a high
axial velocity penetrated into the viscous wall region not only leads to
an acceleration of the low momentum fluid outward from the region
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toward the shear layer, but also interacts with shear layer resulting in
the chaotic motions that spread out in all directions. When the viscous
interaction with the wall takes effect, a velocity gradient in the wall-
ward fluid induced by the chaotic motions is gradually decelerated
and gives rise to the establishment of a viscous motion progressively
developing in a thin periodic fluid layer adjacent to the wall until
a subsequent penetrating eddy. The visual flow studies have observed
the continuously penetrating eddies leading to an unsteady flow in
the regions close to the smooth tube wall and thus confirmed an
existence of periodically thin wall layer immersed in the wall-boun-
ded turbulent shear flows [23,24]. Based on these visualizations, the
computational methods of the momentum, heat, and mass transfers
in the wall-bounded turbulence flows have been developed on the
basis of the sublayer approach concepts. These models stresses that,
although the persistence of thin wall layer may not significantly
influence the hydrodynamic characteristics of the locally developing
boundary-layer flow, the influences of this thin wall layer on the heat
or mass transfer cannot be ignored because these transfer processes,
especially at very high Prandtl and Schmidt numbers, take place
within a very thin layer adjacent to the wall [13–15,25,26].

In the turbulent shear flows with immersed particles, the
momentum of turbulent fluid element is generally transported
much more rapidly than the suspended particles. The local
concentration differences relative to the quasi-random eddy varia-
tion of carrier fluid would change from a deterministic quantity to
a quasi-random variable with the wall in a very short distance.
Hence, the persistently-present turbulence structures in the close
vicinity of the wall could be thought to govern particle transport
towards the wall, i.e., deposition. Based on the random surface
renewal model, the turbulent fluctuations imposed the mean shear
on the boundary are associated with the interaction with an inter-
mittently shear layer between turbulent and nonturbulent regions
of the flow. They may not be the final mechanism for impaction on
the surface because the kinematic constraints suppress the normal
components of turbulent fluctuations on the boundary. However, an
energetic exchange of turbulent eddy intermittently occurred in the
viscous wall region has provided a conclusive demonstration of the
dynamic nature in a very thin layer, where the most of production
and dissipation of turbulent energy take place. Therefore, the
additional stresses caused by turbulent fluctuation in the viscous
wall region must be added to the ordinary viscous terms in the
progressively developing sublayer.

In mathematical terms the velocity fluctuations superimposed on
the main flow can be separated from other effects by decomposing
the instantaneous parameters into a mean quantity and fluctuating
component, i.e. uf ¼ Uf þ u0f denoting the mean velocity of instan-
taneous velocity u in the axial direction by Uf and its velocity of
fluctuation u0, and yf ¼ Vf þ y0f in the radial direction. Generally, the
dimensions of the viscous wall boundary along the wall surface are
very larger than its thickness, and the problem can be simplified by
stipulating that the flow in the boundary layer of the conduit is
regarded as an approximation to parallel flow because, as mentioned
above, the maximum boundary thickness is considerably less than
the characteristic diameter of the conduit. Based on this simplifica-
tion, the dependence of the mean velocities in the main flow on the
axial direction is very smaller than that on the radial direction, Vf�
Uf and v/vx � v/vy, and thus the shear stress sw in the turbulent
boundary-layer flows may be approximated by

sw ¼ m
vUf

vy
� ru0f y0f ; (1)

where y is the normal distance from the wall, m the dynamical
viscosity, and r the fluid density. The turbulent inertia composes the
Newtonian viscous stress and the turbulent shear ru0f y0f , where the
mean value u0f y0f represents the turbulent element flux in the wall-
normal direction as the fluid element transport. One attempts to
model the fluctuation terms by assuming that the rate for a move-
ment down the gradient of turbulent fluid element caused by
turbulent shear is proportional to the magnitude of mean gradient
and expresses as �ru0f y0f ¼ emvUf=vy. If the effect of the turbulent
fluctuations is taken into consideration by the turbulent eddy
viscosity et, the turbulent eddy diffusivity em¼ et has been calculated
by

et

n
¼ yþð4�yþ0:08Þ

"
2:5�107

Re

# �yþ
400þyþ

�10�3 for all yþ ¼ yu*=n ½7�: (2)

The characteristic features of sublayer approach concept are
based on the assumptions that a rapidly decay penetration process
is govern by an unsteady molecular transport in the viscous wall
boundary-layer flows and that that the transformation of instan-
taneous properties into the lifetime of a single eddy can be achieved
by substituting the residence time s between successive eddies for
the instantaneous contact time of a single eddy. Correspondingly,
the boundary layer equation for unsteady momentum of an indi-
vidual turbulence element near the wall with both mean and
fluctuating quantities may be written as

vUf

vs
¼ �1

r

dP
dx
þ ðnþ etÞ

v2Uf

vy2 ; (3)

where the parameter dP/dx indicates the effect of the mean axial
pressure gradient and n the kinematic viscosity. Through the
uniform diffusion substance in a turbulent element approaching
the wall, the substitution for Uf by the bulk mean velocity uN at the
time just after the arrival of an eddy s ¼ 0 has been found to be
quite reasonable. The residence time s between successive eddies
has been considered as a statistical distribution varying with the
corresponding distribution density function ps(s). It has been
demonstrated that the forms of the distribution density function
for the residence time s over the surface did not appear greatly to
affect calculated profile of the average transport properties [4,5,26–
28]. For the convenient, the exponentially-distributed density
function, psðsÞ ¼ ð1=sÞ expð�s=sÞ, proposed by [25] is taken
account for predicting the transport properties during the average
residence time s of all eddy lifetimes, which also establishes
a measure of the average sublayer growth period. Consequently, the
time dependency of an individual turbulence element can be
transformed into the spatial variation of average time domain by
multiplying each term of equation (3) with the exponentially-
distributed density function ps(s)ds and then integrating with
respect to the residence time s, i.e.

d2Uf

dy2 �
1

ðnþ etÞs
Uf ¼

1
rðnþ etÞ

dP
dx
� 1
ðnþ etÞs

uN; (4)

where Uf ¼
RN

0 Uf psðsÞds and P ¼
RN

0 PpsðsÞds. The solution of
equation (4) coupled with the boundary conditions of Uf ¼ 0 at y¼
0 and Uf ¼ finite as y / N leads to an expression for the time-
averaged velocity profiles within the wall region of the form

Uf

uN
¼
�

1� s
ruN

dP
dx

�"
1� exp

 
� yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ etÞs

p
!#

: (5)

For hydrodynamically fully developed flow through a circular
tube of diameter d, the time-averaged flow profile can be written in
terms of the friction velocity u* from the pressure gradient
dP=dx ¼ �4ru2

*=d.
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One of sublayer approach models proposed that the average
growth period of viscous wall boundary layer relative to the
outspread turbulence fluctuations is essentially determined by the
value of maximum growth thickness [2,28]. Since the theory of
viscous turbulent transition used does not admit a well-defined
sublayer thickness, an alternative approach is taken into account by
assuming that the Prandtl formula for the friction factor
f ¼ 2ðu*=Uf Þ2 proposed by [28] can reasonable be modified with
the aid of the bulk mean fluid velocity
uþN ¼ ð2=rþ2Þ

R rþ

0 Uþf ðr
þ � yþÞdyþ by putting Uþf ¼ 0:99 uþN and

written as f ¼ 0.0757[log(Re/7.071)]�2, where the nondimensional
tube radius rþ ¼ ru*=n ¼ ðRe=2Þ

ffiffiffiffiffiffiffiffi
f =2

p
, Uþf ¼ Uf=u*, and

uþN ¼ uN=u*. The nondimensional maximum growth thickness
dþm ¼ du*=n obtained on the basis of this assumption is expressed
as a function of the friction factor and can be estimated for a given
Reynolds number Re ¼ 2uþNrþ. Subsequently, the formulation for
nondimensional average sublayer growth period sþ ¼ u*

ffiffiffiffiffiffiffi
s=n

p
can

be derived from approximating the time-averaged velocity distri-
butions profiles by logarithmic velocity profiles Uþf ¼ 2:5 lnðyþÞ þ
5:5 and also expressed in terms of the friction factor. It should be
noted that the additional effect of turbulent eddy diffusivity et in
equation (5) induced by the turbulent fluctuations is not a constant
but rather varies with the distance from the wall. As seen from
Fig. 1, if the measurement of et/n is also simplified as corresponding
with the maximum thickness, the variation of sþ with Re indicates
that the period of the growth is increased with increased Reynolds
number or equivalently the viscous turbulent transition near the
wall is delayed. Although the magnitude of sþ slightly deviates
from the visual flow observation that sþ is 14 � sþ � 17 in the
smooth tube flows for 2 � 104 < Re < 5.5 � 104 [24], its tendency is
in basic agreement with experimental date obtained by [2] for fully
developed tube flow conditions. The predicted trend is also shown
for the case in which the effect of mean axial pressure gradient is
neglected and the influence of the axial pressure gradient on sþ

appears to be negligibly small for Re > 104. This agrees with
theoretical results that the axial pressure gradient on viscous
sublayer becomes important for the deeper molecular penetration
associate with low Reynolds number flow [12,13].
2.1. Thermophoretic velocities

In the wall-bounded turbulence shear flows with thermal
intensity gradients, the heat transports of a nonisothermal fluid
element intermittently moving to near the surface are analogous to
its momentum. The effects of wall-normal turbulence on the
instantaneous transport parameters can also be separated from
other effects by decomposing the instantaneous temperature into
a mean temperature T and a fluctuating temperature T0. Therefore,
the heat flux q that consists of the molecular flux and the turbulent
flux rcpT 0y0f may be expressed as

q ¼ �k
vT
vy
� rcpT 0y0f ; (6)

where k is the thermal conductivity and cp the specific heat at
constant pressure. Since the time mean values of the turbulent flux
u0f y0f and T 0y0f arise from the same mechanism of mean fluid
convection, the heat flux due to turbulent fluctuation may also be
modelled by gradient diffusion and expressed as T 0y0f ¼ �etvT=vy.

Since the thermal boundary layer is thin, the temperature
gradient across the viscous wall boundary layer in the y-direction is
much larger than the gradient along it. When the dissipation is
neglected, the unsteady energy transport of an individual turbu-
lence element near the wall with both mean and fluctuating
quantities can be approximated by substituting the residence time s
between successive eddies for the instantaneous contact time of
a single eddy, and expressed by the form

vT
vs
¼ ðaþ etÞ

v2T
vy2 ; (7)

where a thermal diffusivity. The transformation of time-dependent
temperature distributions into the spatial variation of average time
domain is analogous to that of the velocity distributions, and thus
the time-averaged temperature distributions for the initial condi-
tion of T ¼ TN at s ¼ 0 can be written as

v2T
vy2 �

1
ðaþ etÞs

T ¼ � 1
ðaþ etÞs

TN; (8)

where T ¼
RN

0 TpsðsÞds and would be restricted to the boundary
conditions of T ¼ Tw at y ¼ 0 and T ¼ finite as y / N. Once the
variations of average sublayer growth period with the turbulent
eddy intensity are known, the relative temperature distributions
can be predicted by

T � Tw

TN � Tw
¼ 1� exp

 
� yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ etÞs

p
!
: (9)

It has been accepted that a temperature gradient within a gas
containing particles would give rise to the particle migrations
towards the cooler fluid because the molecular bombardment of
particles is more energetic on the hot side than on the cold side. A
general formula for the thermophoretic force

Fth ¼ �12pmnrpCs

Kg

Kp
þ CtKn

ð1þ 3CmKnÞ
�

1þ 2Kg

Kp
þ 2CtKn

� VT
T
; (10)

proposed by [29], will be adopted to evaluated the thermal effects
on particle transport processes over the entire range of Knudsen
numbers. The thermophoretic force per unit particle mass is usually
transformed into the corresponding thermophoretic velocity
V th ¼ �ðKthn=TÞvT=vy, where the thermophoretic coefficient Kth is
characterized by the Knudsen number Kn and the ratio of thermal
conductivity of the fluid Kg and the particle Kp. With the Cun-
ningham slip correction factor [30]

Cf ¼ 1þ Kn

�
1:257þ 0:4 exp

�
�1:1

Kn

��
; (11)

the thermophoretic coefficient Kth is represented as

Kth ¼
2CsCf

�
Kg

Kp
þ CtKn

�
ð1þ 3CsKnÞ

�
1þ 2Kg

Kp
þ CtKn

�; (12)

where Cs ¼ 1.147 is the thermal slip coefficient, Ct ¼ 2.18 the
temperature jump coefficient, and Cm ¼ 1.146 the momentum
exchange coefficient [31]. The Knudsen number Kn ¼ lp/rp is the
ratio of mean free path lp to particle radius rp. As a particle travels at
its mean thermal velocity, the particle mean free path lp is calcu-
lated by lp ¼ sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12KbT=p2rr2

p

q
with Boltzmann constant Kb¼ 1.38

� 10�23J/K and, incorporating the Cunningham correction

Cc ¼ 1þ 1
Pdp

	
15:6þ 7:0 exp



�0:059Pdp

��
(13)

with the absolute pressure P in kPa and the particle diameter dp

in mm, the particle relaxation time sp is calculated by
sp ¼ Ccrpd2

p=18m, where rp the particle density [32]. A constant
thermophoretic coefficient Kth z 0.55 has been concluded to be
applicable for the particles in transition regime Kn z 1 and free
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Fig. 1. Average sublayer growth period sþ as function of Reynolds number.
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molecule flow regime Kn [ 1, which represents that the ther-
mophoresis in the regions is independent of thermal conductivity
ratio and has its largest effect [33]. It has been obtained that,
when the particle size involved falls in the continuum regime Kn

� 1.0, the effect of thermophoresis is significantly enhanced with
reduced heat conductivity in particles because the thermopho-
retic coefficient Kth decreases continuously with increasing
particle sizes [34]. This has been explained by considering that
the thermophoretic mechanism for larger particles is subjected to
the gas slipping along the nonuniformly heated particle surface,
where the nonuniformity is stipulated by the temperature
gradient of gas and strongly depends on the thermal conductivity
of particles [35].

The calculated values of thermophoretic coefficient Kth z
0.55282 indicate that the particle sizes involved in the present
model lie in the free molecule flow regime and come closer to the
transition regime with the larger particles. Subsequently, the
temperature distributions of equation (9) obtained on the basis of
present analysis would be adapted to evaluate the thermophoretic
effect in accordance with the nondimensional thermophoretic
velocity Vþth ¼ V th=u* of the form

Vþth ¼
�Kth

TN�Tw
TN

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Pr
þ et

n

r 2
4e

�
yþ

sþ
ffiffiffiffiffiffiffi
1
Pr
þet

n

p �
� TN�Tw

TN

3
5
; (14)

where Prandtl number Pr ¼ n/a. Since the thermophoretic velocity
Vth represents an additional effect on the particle mass flux towards
the wall as a result of a temperature gradient within a fluid con-
taining particles, Fig. 2 reveals the dependence of thermophoretic
velocity distributions upon the normalized particle relaxation time
sþp for different Reynolds numbers to directly characterize the
interaction of the particle inertia, the viscous drag resistance, and
the thermophoretic drift mechanism.

The heat flux against the temperature gradient is dominated
essentially by the molecular conduction and could be enhanced by
the temperature fluctuation as a result of the wall turbulence
fluctuation in a fluid eddy approaching to the wall. The calculations
of thermophoretic velocity Vþth at location of about one particle
radius from the wall have its largest values for each sþp because the
temperature fluctuation in the region very close to the wall is
higher than elsewhere as well as the temperature gradient. The
variation of calculated Vþth becomes relatively insensitive to the
change of sþp with increasing Reynolds number. This reveals that
the temperature fluctuations in a fluid eddy approaching to the wall
would result in distinct heat flux gradients with respect to the
fluctuations of periodic sublayer. At high Reynolds number, the
fluid is replaced at much lower frequency, the resistance within
viscous sublayer drags the surrounding fluid and prevents the fluid
from taking more heat, so that the effect of particle size is much less
than the effect of thermal intensity gradient in the vicinity of the
wall. It is shown that, however, the augmentation of Vþth caused by
thermal fluctuation intensity is more pronounced on the smaller
particles than the larger particles. Considering the fact that, as the
particle size increases, the value of Knudsen number decreases and
shifts the thermal force mechanism toward the continuum regime
where the effect of thermal intensity gradient in the vicinity of the
wall is much less than the effect of particle size and the thermo-
phoretic effect decreases with increasing particle size. Calculations
are also shown for the case in which the effect of axial pressure
gradient is neglected. A quite dramatic influence of axial pressure
gradient on the on the thermophoresis is observed for each Rey-
nolds number.
3. Governing equations for particle deposition

In general, the investigations of particle deposition mainly
include incompressible fluid laden by spherical and dilute particles
in the fully-developed turbulence boundary-layer flows. This
means that the fluid motion is unaffected by the presence of the
particles and that the collisions between particles can be neglected.
If the density of the particle is considerably larger than the density
of the carrier fluid, a number of external forces can also be
neglected, such as gravity, electrical forces and Bassett’s history
terms. Therefore, neglecting the gravity and the lifting force, the
viscous drag effect that acts on individual particles imposed by the
surrounding fluid is assumed to be an important mechanism to
induce the wallward particle motion as a consequence of the
different velocities between particles and carrier fluid. In the case
where there are no strong external forces that induce motion, the
molecular diffusion becomes important for the particle migrations
against the concentration gradient. When a temperature gradient is
maintained, thermal diffusion contribution to the transport
processes needs additionally to take into account.

Inside the wall-bounded shear layer, the concentration gradi-
ents of diffusing substance in a fluid eddy approaching to the wall is
established, but the characteristic thickness of the concentration
boundary layer at the interface is extremely thin in the case of
immersed particles. Hence, the derivatives in y-direction are
assumed to be much larger than in the other directions, and the
unsteady equations for the particle mass balance and the particle
transport in an individual turbulence element near the wall may be
approximated by

vc
vs
þ

v


cyp
�

vy
¼ 0; (15)

v


cyp
�

vs
þ

v


cypyp

�
vy

¼
cðyf � ypÞ

sp
� Db

sp

vc
vy
þ cVth

sp
; (16)

where c denotes the instantaneous concentration of particles, and
the instantaneous velocity yp of particles is a consequence of the
external force that acts on individual particles imposed by the
surrounding fluid. The Brownian diffusion Db for a rarefied gas effect
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is calculated by Db ¼ CcKbT/3pmdp [32]. As mentioned early, the
additional stresses associated with turbulent fluctuation can be
separated from other mechanisms by decomposing the instanta-
neous parameters into a mean quantity and fluctuating component.
Analogously, c ¼ C þ c0 and yp ¼ Vp þ y0p denote the mean compo-
nents of instantaneous properties c and yp in the wall-normal
direction by C and Vp, and their fluctuation components c0 and y0p.
Applying these processes to the equations (15) and (16) the mean
particle flux N of turbulent fluid element that intermittently move to
near the wall can be written as N ¼ CVp þ c0y0p. Since the time mean
value of turbulent flux c0y0p arises from the same mechanism of mean
fluid convection, the particle mass flux due to the turbulent fluctu-
ation may be simply modelled by the gradient diffusion,
c0y0p ¼ �epvC=vy, with the proportional constant of particle eddy
diffusivity ep. Consequently, the particle conservation equations
with both mean and fluctuating quantities might be approximate by

vC
vs
¼ �vCVp

vy
þ ep

v2C
vy2 ; (17)

vVp

vs
¼ �

vy02p
vy
� Vp

sp
� Db

spC
vC
vy
þ Vth

sp
: (18)

3.1. Particle convection velocities

The particles with sufficient inertia moving against the sharp
decay of turbulent intensity have been expected to possess higher
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Fig. 2. Distribution of average thermophoresis velocity Vþth relative to partic
deposition rates, and y0þ2
f sþp in the equation for particle eddy

diffusivity ep=n ¼ et=nþ y0þ2
f sþp was defined as an enhanced factor

portraying the behaviour of higher deposition rates [9]. Relative to
the experimental results [10], this model yielded reasonable
agreement with deposition rate measurements for intermediate
relaxation times, but poor agreement at high values. This is
primarily due to the enhanced factor, which increases in an
unbounded manner with relaxation time and does not reflect the
difference between the particle and fluid velocity fluctuations.

In order to partly overcome this insufficiency, the present model
incorporated the particle momentum equation in the analysis by
considering that the particles are pushed by a gradient in the
intensity of wall-normal velocity fluctuations and trapped in the
viscous wall region, and that the fluctuating velocities of suspended
particle and carrier fluid in the region are coupled through the
balance between the convective acceleration and the viscous drag
resistance. Based on the manner suggested by [19,20] and [36], the
net particle flux is separated into the diffusive and convective
components by defining Vp ¼ Vpc � (Db/C)vC/vy þ Vth. With this
simplification, the concentration dependent terms of the external
forces imposed by the surrounding fluid are decomposed from the
equation (18) and shifted into the mass conservation equation (17)
through a modified form of the mean particle flux N

N ¼ �


Db þ ep

�vC
vy
þ CVpc þ CVth; (19)

where the mean convective drift velocity of solid particles can thus
be solved independently from the particle momentum equation
-0.008

-0.004

0

0.004

0.008

T - Tw∞  = 05 oC; Re = 5,000; dP/dx 0

0 20 40 60 80 100

-0.002

-0.001

0

0.001

0.002

0.003

T - Tw = 05 oC; Re = 50,000; dP/dx  0

all distance, y + - rp
+

∞

le relaxation time sþp at fixed Kg/Kp ¼ 0.1, rp/rg ¼ 1000, and Pr ¼ 0.708.



M.C. Chiou et al. / International Journal of Thermal Sciences 49 (2010) 290–301296
dVpc

ds
þ Vpc

sp
¼ �

dy02p
dy

: (20)

The gradient in turbulent fluctuation intensities at a sufficient
distance away from the wall is negligibly small. The particle
convective velocity gained by this intensity gradients may reason-
ably be neglected at the time just after the arrival of a turbulent
eddy, Vpc ¼ 0 at s ¼ 0. Following the transformation of carrier fluid
properties into the spatial variation of average time domain, the
distributions of convective drift velocity
Vþpc ¼ Vpc=u* ¼

RN
0 VþpcpsðsÞds within the average sublayer growth

period can be estimated by

Vþpc ¼ �sþp
dy0þ2

p

dyþ

 
1þ

sþp
sþp þ sþ2

!
: (21)

It is apparent that for the motion of fluid possessing a fixed wall-
contact time sþ the important feature of convective drift mecha-
nism on the transport processes is mainly emerged in both the
gradient of time-average fluctuation velocity

�
y0þ2

p ¼
RN

0 y0þ2
p psðsÞds

and the particle inertia. A linear differential equation for Reynolds
normal stress of the particles in the presence of memory effect has
been proposed by [21]. Based on the time mean values of the fluid
and particle turbulence flux arising from the same mechanism of
mean fluid convection, this equation may be reasonably modified
by substituting the residence time s of an individual eddy element
for the instantaneous contact time and written as
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dy0p
ds
þ 1

sp
y0p ¼

1
sp

y0f : (22)

From the Lagrangian correlation coefficient
RLf ðsÞ ¼ expð�s=sgÞ ¼ y0f ð0Þy

0
f ðsÞ=y02f of the fluid motion in the

stationary homogeneous uniform flow [37], the solution of the
mean fluctuation velocity of particles that satisfies the initial
condition y0p ¼ 0 at s ¼ 0, is expressed as

y02p ðsÞ ¼ y02p

�
1� 2 exp

�
� sg þ sp

sgsp
s
�
þ exp

�
� 2

sp
s
��
: (23)

where sg ¼ et=y02f is integral time scale of the Lagrangian correla-
tion. Simultaneously, within the average sublayer growth period
a constitutive relation for the wall-normal fluctuation velocities of
immersed particles and carrier fluid can be derived and expressed
as

�
y0þ2

p ¼ y0þ2
p

 
1�

2sþg sþp
sþ2sþg þ sþ2sþp þ sþg sþp

þ
sþp

2sþ2 þ sþp

!
: (24)

3.2. Particle deposition rates

The particle mass flux for the residence time of an individual
eddy element in a nonisothermal fluid field has been established in
terms of the Brownian and turbulent diffusion due to a gradient in
the particle concentration, a convective drift due to the particle
all distance, y+ - rp
+
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inertia, and the thermal diffusion due to the temperature gradient.
Hence, substituting equation (19) into equation (17) has the effect
of shifting the diffusive terms into the mass conservation equation
and leads to the relation

vC
vs
¼ v

vy

�
Dp

vC
vy
� VthC

�
� Vpc

vC
vy
; (25)

where Dp ¼ DB þ ep indicates a comparable effect between
molecular diffusion and turbulent diffusivity of the particles. The
mean concentration distribution of diffusing substance in a turbu-
lent element approaching the wall is considered to be uniform, so
that its magnitude at the time just after the arrival of an eddy s ¼
0 is set equal to the midstream fluid, C ¼ cN.

Same as the transformation of carrier fluid properties, the time
dependency of particle concentration in an individual turbulence
element near the wall can be transformed into the spatial variation
of average time domain by multiplying each term of equation (25)
with the exponentially-distributed density function ps(s)ds and
then integrating with respect to the residence time s. Subsequently,
the distributions of particle concentration within the average
sublayer growth period, CðyÞ ¼

RN
0 Cðy; sÞpsðsÞds, is considered to

be restricted to the wall region by the boundary conditions of C ¼
cw at y ¼ rp and C ¼ cN as y / N, and thus the solution of time-
averaged particle concentration can be obtained and expressed as
the form
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n sþ

�
þ þ

�35
y �rp : (26)

Once the concentration dependent terms of the external forces
imposed by the surrounding fluid in the equation for particle mass
flux have been evaluated prior to the concentration boundary
development, the concentration developments within the average
sublayer growth period can be obtained. Consequently, the particle
deposition velocity yþd ¼yd=u*¼N=u*ðcN�cwÞ can be predicted
quantitatively by means of the form

yþd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4Dp

n þ sþ2Vþth

�
þ
�
sþVþpc

�2
r

þ
�

Vþth þ Vþpc

�
sþ

2sþ
: (27)

4. Results and discussions

The isothermal experiment data of particle deposition from
fully-developed turbulence pipe flow obtained by [10] are generally
accepted as one of the most dependable data set and has been
plotted against the simulated results of present approach model.
1E-007

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

0.0001 0.01 1 100

0.0001 0.01 1 100

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

Re = 5,000

Re = 10,000

Re = 50,000

Re = 100,000

Particle relaxation time, p
+

dP / dx  0.0; p / g = 1000

(III)

(II)

(I)

dP / dx  0.0; p / g = 1000

anisms that dominate particle transport processes, (I) particle eddy diffusivity and convective
y and convective drift at yþ ¼ rþp , and Brownian diffusion; (III) Brownian diffusion only.



M.C. Chiou et al. / International Journal of Thermal Sciences 49 (2010) 290–301298
Usually, the variation in measured deposition velocity yþd with
particle relaxation time sþp has been divided into three distinct
regimes [38], such as the turbulent diffusion regime where the
particle transport to the wall is well represented by a gradient
diffusion and yþd decreases monotonically with sþp ; the turbulent
diffusion-eddy impaction regime where the particles acquire an
impacting momentum towards the wall through interactions with
turbulent eddies leading to a substantial increase in yþd with
increasing sþp ; the particle inertia regime where the excessive
particle inertia prevents particles from acquiring sufficient
impacting momentum from the turbulence and results in a decline
of yþd with increased sþp .

The convective drift velocity Vþpc of particles within the average
sublayer growth period is calculated by substituting
yþ ¼ rþp þ 0:9 sþp into y0þf as the manner mentioned in [6], and
solving the equation (24) for y0þ2

p and equation (21) by iteration.
Fig. 3 emphasizes the fact that the damping of the turbulent
properties by the wall is restricted to a very narrow region, espe-
cially for the particle velocity fluctuations. The gradient of these
fluctuations is responsible for the predicted trend of Vþpc profiles,
which rise slowly from the main stream boundary to a maximum at
a short distance close to the wall before dropping rapidly to zero at
the wall. It is apparent that the peak position of Vþpc profiles is
dependent on the ability that the particles respond to the fluid
velocity fluctuations. For sþp < 10, the peak position of Vþpc profiles
is located at yþzrþp þ 12. This is because the low inertia particles
1E-006

1E-005

0.0001

0.001

0.01

0.1

1

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

0.0001 0.01 1 100

0.0001 0.01 1 100

p / g = 500

p / g = 1,000

p / g = 2,000

Particle re

D
im

en
si

on
le

ss
 p

ar
ti

cl
e 

de
po

si
ti

on
 v

el
oc

it
y 

of
 a

ve
ra

ge
 ti

m
e 

do
m

ai
n,

 
d

 Liu and Agarwal [10]

1.[7]; 2.[40]; 3.[41]; 4.[6]; 5.[8] 

Re = 50,000, dP / dx = 0

Re = 50,000, dP / dx = 0

Fig. 5. Average deposition velocity yþd relative to sþp at different density ratios rp/rg including
at yþ ¼ rþp þ 0:9sþp , and Brownian diffusion.
closely follow the wallward fluid eddies and the velocity fluctua-
tions of the particles and fluid are essentially the same, so that the
kinematic constraint suppresses the wall-normal component of
turbulent fluctuation intensity and forms an effective trap to
prevent the particles from penetrating the viscous wall boundary
layer to any great depth. For sþp > 10, the peak position of Vþpc
profiles becomes sharper and closer to the wall with increasing
particle diameter moderate as well as increasing the peak value.
This stresses that, although high inertia particles respond poorly to
the fluid turbulence, their induced velocities are more persistent
than those of low inertia particles. The key feature of Vþpc profiles
obtained on the basis of the present calculation scheme is similar to
that described in [21], the main difference being that non-equi-
librium theory predicts the peak position yþ ¼ 20 due to the
memory effect. However, it is important to note that the wall-
normal gradient in particle velocity fluctuations induces an addi-
tional convection drift mechanism, which accelerates the particles
toward the wall in a region within the peak position, but in the
region beyond the peak position pushes the particles toward the
main stream boundary.

In order to test the relative dependence of particle deposition
velocity yþd upon the position where the particles respond to the
fluctuating influences of fluid turbulence, two cases are considered;
one is presumed to occur up to the distance yþ ¼ rþp þ 0:9sþp , and
the other is located at about one particle radius from the wall. The
deposition velocities calculated with two different locations are
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compared in Fig. 4 with existing theoretical and experimental data.
The existing data are in reasonable agreement with predicted trend
of yþd profiles using yþ ¼ rþp þ 0:9sþp , which gives reduced particle
eddy diffusivity ep/n with the particle diameter in the immediate
vicinity of the deposition surfaces, when the particle sizes involved
fall in the distance excesses its peak position. This can be postulated
by considering that, as sþp increases, the particles are less able to
respond faithfully to the fluid velocity fluctuations. The particle
fluctuation velocity becomes progressively smaller than the fluid
one, and consequently the strong gradient in the particle fluctua-
tion intensities in the immediate vicinity of the wall enhances the
convective flux through the increased Vþpc, but simultaneously
reduces the diffusion flux through the decreased ep/n. As a result of
a net flux towards the wall, the reduction in the diffusive flux is
smaller than the enhancement in the convective flux, so that the
resulting diffusion towards the wall still remains higher than the
diffusion towards the main stream boundary. This is usually termed
particle inertia moderated regime, in which the deposition velocity
yþd obtained by the present calculation scheme increases with
decreasing sþp , and the introduction of axial pressure gradient
makes a substantial improvement in comparison with the experi-
mental data. This tendency does not continue all the way to the
small particles because the viscous drag resistances increases with
decreasing particle diameter and usually balances the particle
fluctuation intensity in the near-wall region. Therefore, the
convective acceleration would progressively lose its importance
with decreased sþp , resulting in a decrease in the particle convection
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Fig. 6. Average deposition velocity yþd relative to sþp at different temperature differences TN

convection drift at yþ ¼ rþp þ 0:9sþp , and thermophoresis.
drift toward the wall in the turbulent diffusion-eddy impaction
regime. In order to keep the net particle flux invariant for satisfying
the continuity, the convective flux needs to be supplemented by
a large diffusive flux which is achieved by the appropriate devel-
opment of particle concentration profile close to the wall. The
striking feature of this regime is that the deposition velocity
decreases by three to four orders of magnitude with decreasing sþp .

Curve (III) of Fig. 4 is calculated by directly correlating Brow-
nian motion with the concentration gradient. Relative to curves (I)
and (II), it is evidenced that, when the particle sizes involved fall in
the turbulent diffusion regime, Fick’s law of diffusion does provide
a complete description of particle motion in the turbulent
boundary layer. The deposition velocity yþd in this regime rises
against with decreasing sþp . In addition, the dependence of particle
deposition upon the average sublayer growth period has been
characterized by varying the Reynolds number. For hydrodynam-
ically fully developed flow in a circular tube, an increase in Rey-
nolds number results in an enhanced drag between adjacent fluid
layers because of the effect of deep turbulence penetration. The
predicted trend of yþd profiles shows that yþd decreases with
increased Reynolds number in particle inertial moderated regime,
goes through turbulent diffusion-eddy impaction regime, and then
increases with increased Reynolds number in turbulent diffusion
regime. This infers that the time-average particle flux related to
the large scale turbulent structures in the vicinity of the wall
decreases with increased the Reynolds number, except for small
the particles because with their low inertia they tend to follow the
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flow more closely. For this reason, the identical tendency of yþd
verse sþp on different Reynolds numbers may not be expected as
a general rule.

Fig. 5 demonstrates that the variations of yþd with sþp can also be
compared with rp/rg for any Reynolds number. Generally, if there is
a particle concentration gradient across the flow, then there exists
a density gradient, which produces stable stratification and damps
turbulence. The particle–turbulence interactions in the vicinity of
the wall were investigated and the values of turbulent intensity
were also evaluated from the corresponding Reynolds stress
measurements [39]. The observed trend in Reynolds stress profiles
indicates that the Reynolds stresses increase near the wall with
increasing particle size, particle density and particle loading. The
predicted trend of yþd profiles obtained by the present calculation
scheme shows that the low inertia particles benefit most from the
effect of increasing particle density rp and that the enhancement is
probably related to an enhancement of the Reynolds stresses
increase near the wall as result increase in vertical component of
turbulent fluctuation intensities. On the other hand, the deposition
velocity yþd becomes relatively independent upon the density ratio
rp/rg as the particle inertia takes effect. This is because the inertial
effects originated from sharp decay of turbulent fluctuation
intensities in outer region allow the discrete particles to maintain
their high level of fluctuating intensity much close the wall, where
Cþ is of order unity everywhere.

When the variations in thermal intensity between colder and
hotter region of the containing fluid are maintained, it has been
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shown in Fig. 2 that the magnitude of thermophoretic velocity
within the average sublayer growth period has its largest value in
the immediate vicinity of the wall and increases with decreased
particle diameter. For the immersed particles in a nonisothermal
fluid eddy approaching to the wall, the thermophoresis may be
a significant drift mechanism for the particle transports against
thermal intensity gradient as compared to other mechanisms.
When Fig. 6 is referred to, it would be reasonable to point out that
the thermal conductivity used, Kg/Kp ¼ 0.1, represents rather low-
conductivity particles (such as plastic particles in air) which helps
emphasize the thermophoretic effect. It is apparent that the ther-
mophoresis caused by thermal gradient near the wall has a very
significant effect on the deposition velocity yþd , particularly for small
particles sþp < 0:1, and that the magnitude of predicted yþd is
somewhat higher for both non-zero axial pressure gradient and
low Reynolds number. Considering that one particular area
concerns accumulation of particles from gaseous suspensions onto
cooled or heated solid objects, the thermophoresis is expected to
play an important role there, because the gas molecules possessing
high kinetic energy gained from the region of higher temperature
strike the particles and the molecular bombardment of particles is
more energetic on the hot side than on the cold side. The predicted
results reveals clearly that the rates of particle deposit in the cold
surface are increased by several orders of magnitude while the
calculated results for the hot surface are counter to that of the cold
surface. It should be noted that the larger gradient in fluid velocity
fluctuations near the wall would make the larger particles maintain
ation time, p
+
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their high level of fluctuating intensity much closer to the wall,
where the thermophoresis acts as a complementary mechanism to
decrease the drag resistance against the net particle flux towards
the cooled surface, and acts as an opposite effect in the case of
heated surface, resulting in a substantial decrease in yþd . Apparently,
there is an interaction between thermophoresis and particle inertia
in the region 0:1 < sþp < 10, and the inertial effects induced by the
fluctuating intensity gradient always lower the increment of
deposition velocity between temperature differences. It is shown
that, however, for sþp > 10 the thermophoresis has no effect on
deposition velocity for the particular Kg/Kp ratio that was chosen
and that for more-highly-conducting particles the dominance of
inertial effects would arise for sþp < 10.

Fig. 7 shows that the particle migration against the thermal
gradient of surrounding fluid can also be viewed through the
Prandtl number Pr ¼ n/a, which acts as an important parameter for
characterizing the relative importance of the momentum and
energy transport in the nonisothermal turbulence flow fields. It can
be seen that the characteristics of thermophoresis are very much
dependent on its Prandtl number, and that the temperature fluc-
tuations imposed on the fluctuating sublayer could cause an
enhancement on the thermal force inside the relative quiescent
viscous sublayer, resulting in the increase in thermophoretic
deposition with increased Prandtl number. At low values of Pr, the
thermal fluctuations adhere to the velocity fluctuations of the
carrier fluid, so that the thermal transfer due to turbulence is
restricted in the periodically developing boundary layer. Hence, the
drag resistance of viscous sublayer will have significant effect on
preventing the flow from taking more heat and thus reducing the
overall transfer rate. When the Prandtl number Pr increases, the
outer edge of growing sublayer is relatively farther from the wall
than the penetration of the thermal wave during a growth cycle, so
that the high thermal fluctuation maintains itself much closer to
the deposition surface. Consequently, the heat transfer takes place
within a very thin layer adjacent to the wall, where the difference of
thermophoretic effects widens because of the deep penetration of
higher energy eddies, which give rise to an increase in thermo-
phoretic deposition velocity with increased Prandtl number. It is
important to note that the changes in Prandtl number Pr for
sþp > 10 also cease to have any effect as well as varying the
temperature difference.

5. Conclusions

The previous work [12] tried to capture the phenomena of
deposition by solving the particle continuity equation alone, and
demonstrated that a simple analysis method could predict the
general behaviour of particle deposition. However, it is limited to
eliminating the average particle transport coefficients in terms of
unspecified parameters of the average residence time and approach
distance. The present work has overcome this insufficiency by
extending the random surface renewal mode to simultaneously
solve the particle continuity and momentum equations. A useful
framework for estimating the various transport mechanisms is
established in the form of analytical equations. The solution of
these equations agrees well with experimental values of particle
deposition velocity for entire range of particle size.
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